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Abstract—Valiant's concept of Randomized Load Balancing ability and deal with hose constrained demand specifications.
(RLB), also promoted under the name ‘two-phase routing’, |deally, to support a hose constrained traffic demand, a routing
has previously been shown to provide a cost-effective way of strategy mustif be robust under the hose constrairit) (

implementing overlay networks that are robust to dynamically . - -
changing demand patterns. RLB is accomplished in two steps; in route traffic without creating hot spotsii { avoid the need for

the first step, traffic is randomly distributed across the network, real time reconfiguration of capacity. All of these criteria are
and in the second step traffic is routed to the final destination. satisfied by theRandomized Load Balancin@RLB) scheme
One of the benefits of RLB is that packets experience only a aglso known asTwo-Phase Routing

single stage of routing, thus reducing queueing delays associated 1o pagic idea of RLB is to route demands from network
with multi-hop architectures. In this paper, we study the queuing

performance of RLB, both through analytical methods and ©€dge nodes irtwo steps In the first (load balancing) step,

packet-level simulations usingns2on three representative carrier all nodes randomly distribute their traffic among all nodes
networks. We show that purely random traffic splitting in the (or among a carefully chosen subset of nodes [19]) in the
randomization step of RLB leads to higher queuing delays than network. Traffic splitting may be performed on a packet-

pseudo-random splitting using, e.g., a round-robin schedule. ; :
Furthermore, we show that, for pseudo-random scheduling, level or flow-level, and may be either done on layer 3 (IP)

queuing delays depend significantly on the degree of uniformity O layer 2 (Ethernet). In the second (routing) step, each
of the offered demand patterns, with uniform demand matrices Node processes the traffic it received in step 1, and sends
representing a provably worst-case scenario. These results areit to its final destination. Both steps of RLB carry traffic
independent of whether RLB employs priority mechanisms on statically pre-configuredircuits or paths. Due to the

between traffic from step one over step two. A comparison With e randomization in step 1 of RLB, the architecture can
multi-hop shortest-path routing reveals that RLB eliminates the ’

occurrence of demand-specific hot spots in the network. handle extreme traffic variability. Hence, no reconfiguration is
required to address dynamic changes. Furthermore, since each
l. INTRODUCTION packet is only processahcebetween source and destination,

Emerging data communication services as well as cont®RitB reduces the need for multiple packet buffering, thus
distribution and file sharing applications create an increasipgoviding improved QoS, especially in terms of delay jitter.
amount of uncertainty and dynamism in the traffic distribution
across carrier networks. Examples of such services are virtdal Related Work

private networks (VP.NS)' peer-to-peer networking, or_remote_l_he RLB architecture was first proposed by Valiant in
storage and computing applications [1]. These services are . : .
€ context of processor interconnection networks [21]. This
well captured by thehose model4], [5]. The hose model ; .
e : . concept was then extended to the design of scalable switches
only specifies the node ingress/egress capacities, but does

specify the actual point-to-point demands. Thus it is up to tﬂg . The scheme has recently received further attention for

service provider to determine efficient routing and distributio@rChItectIng high-capacity internet packet routers [3], [7], [22].
R ore recently RLB has been proposed abetwork levelas
of traffic within the network.

The traditional approach to routing and traffic distributio gn efficient way of de5|gr_1|ng backt_>one networks .[1.01’ [18],
. . 2, ' .[23]. Reference 10 describes algorithms for optimizing RLB
relies heavily on the accurate estimation of the traffic matriX. : . .
LT . . Aihk resources in capacitated networks that allow fractional
Accurate estimation is essential to avoid network congestion

and to guarantee Quality of Service (QoS). Traffic matri multlpqth) routing. Reference 23 1S P”.”".'a”'y focused on
L : ; ; ; e ; measuring the effects of RLB on minimizing the fanout of
estimation requires fine-grained traffic monitoring which does . :
: . rquters at the edge. RLB has also received attention to address

not scale. When used for fine grained measurements, trﬁﬁ

fic monitoring based on the widely used Simple Networ
Management Protocol (SNMP) will significantly impact router . N . ) )

f Th f t nt for the uncertainty of act When referring to a ‘circuit’ or a ‘path’, we mean a logic connection
periormance. erefore o account for the uncertainty of ac L’b@[ween two end nodes that does not require any packet processing en-route.

traffic demands, service providers often over-provision theduch an object may be implemented, e.g., using SONET or WDM technology.
networks. More generally, it may also be implemented using MPLS tunnels; however,

o fthe k . f K the latter do not constitute ‘circuits’ in the strict sense, since (unlike SONET)
ne of the key requirements for networks to SUPpPOrt eMergp s requires packet label look-ups and buffering at each transit node. A

ing data services is the ability to handle extreme traffic variore detailed account on this topic can be found in [19].

e challenges posed by new network applications such as file



sharing and the Internet Indirection Infrastructure (i3). Refl-/N-th being kept locally, assuming that each node has the
erence 12 provides a linear program that computes the pashsme amount of ingress/egress traffic. The traffic distribution
for maximum throughput to support highly variable servican step 1 is random in the sense that it is totally agnostic of the
overlay traffic. References 11 and 19 show that compareddemand matrix and does not require any routing decisions at
other routing strategies RLB requires less network resourcéise ingress. We will consider two different implementations
o of random traffic splitting in our analyses and simulations
B. Our Contribution below, one based omprobabilistic traffic splitting and the
All of the previous work has proven the benefits of RLBther based on pseudo-randonge.g., round-robin) schedule.
by consideringime-averagedapacities required for transportGeneralizing to different traffic marginal®; at each node,
and switching in the network. In this paper we study ththe amount of traffic to be distributed in step 1 of RLB
performance of RLB on gacket level In particular, we is the product multicommodity flow [14] induced by the
investigate the queueing performance of RLB, both through;’s, i.e., the capacity required for the link between nodes
analytical methods and through packet-level simulations usingind j is D;D;/ ", D;. Furthermore, it has been shown in
ns2 We show that purely probabilistic traffic splitting inRef. 19 that load-balancing across a carefully chosen subset of
the randomization step of RLB [24] leads to higher queuinf” < N intermediate nodes can provide cost and performance
delays than pseudo-random splitting using, e.g., a rourgvantages; in this case eélectiveRLB, the ingress traffic
robin schedule. Furthermore, we show that, for pseudo-randerould be split only amongd< nodes. Traffic splitting may be
scheduling, queuing delays depend significantly on the degm@formed on a packet-by-packet basis or on a per-flow basis,
of uniformity of the offered demand patterns, witiniform and may be done on layer 3 (IP) or on layer 2 (Ethernet).
demand matrices representing a provalutyrst-casescenario.  In step 2 of RLB [Fig. 1(b)], a total traffic of D (with
These results are independent of whether one implements @i/N stemming from each node in the network) is processed
ority mechanisms between traffic from step 1 over traffic frorat each node’s routing engine, and is statistically multiplexed
step 2 in RLB. A comparison with packet-switched (multi-hopdn a path leading to its final destination, which, like in step 1,
architectures based on shortest-path routing reveals that Rhd capacityD /N for equal node ingress/egress capacities and
eliminates the occurrence of demand-specific hot spots in theD;/>". D, for different capacities. Note that the traffic in
network. steps 1 and 2 is uniform on averagegardlessof the actual
This paper is organized as follows: Section Il reviews RLBemand matrix to be routed, with fluctuations being accom-
in some more detail and outlines the architectural choicesodated by appropriate buffering within the routing nodes,
regarding queueing. Sec. lll then presents a queuing analysiswill be quantified later in this paper. The uniform nature
of RLB for various queueing options. In Sec. IV we describef the traffic in each step of RLB permits pre-allocation of
the packet-level simulation and the underlying traffic modedtatic network capacity, which dramatically simplifies network
followed by a discussion of results in Sec. V. Finally, Sec. \Mkliability and design.
summarizes the most important findings of this paper. Since RLB performs strict double-hop routing, all traffic
is buffered only once(at the beginning of step 2). This
reduces random buffering delays when compared to a multi-
Figure 1 visualizes RLB from a queuing perspective fdmop network architecture, which buffers traffic at each node.
a four-node network. Each node consists of a local packatrthermore, sincehrough-trafficis not processed multiple
routing engine and an interface to a full mesh of paths. times on a packet level on its way from source to destination,
In step 1 of RLB [Fig. 1(a)], the ingress traffid is split the network scalability problem associated with the difficulties
and delivered to the routing engines of all other nodes, with building large packet routers [7] is ameliorated by RLB.
One obvious disadvantage of RLB (as with any other
architecture employing multi-path routing) is the routing of
traffic over paths with significant time-of-flight differences. If
traffic splitting is done on a packet level rather than per flow,
the resulting delay spread can lead to packet mis-sequencing
which potentially asks for packet re-ordering. Note, however,
that these time-of-flight differences dwt contribute to ran-
dom delay jitter, but are fullypredictable based on easily
accessible knowledge of the two paths used by a packet on its
way from source to destination. Therefore, these propagation
delay differences can be counteracted by deterministic delays

I[I. RANDOMIZED LOAD BALANCING (RLB)

Circuit
interface

L

(a) Step 1: Traffic distribution (b) Step 2: Traffic routing at the ingress, intermediate, or egress nodes, similar to what

is being done when using virtual concatenation (VCAT) over

capable of routing an amount of traffic corresponding to the respective nod@.ﬂtlple parallel rOUt_eS n SONET' Recem_ly in this context
ingress/egress demanid, as well as an interface to the underlying circuit15], @ novel contention resolution mechanism was presented

network, making up a full mesh of static circuits with capadiy N. that enforces packet ordering in a load balanced switch ar-

Fig. 1. Basic RLB architecture. Each node consists of a small routing engi
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Fig. 2. In RLB, a link can be shared among step 1 and step 2 traffic, or

capacities can be segregated. It is easily verified from convexity arguments that, for a fixed
mean «;, the values ofaé.z), a§3) are minimal for binary

: : : . . matrices{d;;} and maximal for uniform matrice§d;;}, i.e.,
chitecture. The maximum propagation delay in RLB is abotit — 1/(N — 1) (assumingd;; = 0), yielding

twicethe propagation delay of the longest path in the network™’
which depending on the underlying application may restrict the 2

geographic dimensions of such networks. a; < a§_2) < ajla;+1) -

o1 sall+a), ()

1. QUEUING ANALYSIS

We now analyze the queueing dynamics for both the randqm at® (3)
. - Y J
and the pseudo-random traffic splitting schemes. We consider o2 o3
the queues associated with step 1 (traffic splitting) as well as aj(af +3a;+1) —3(a; +1)—L— +2 J
step 2 (routing). We will distinguish between two scenarios,

IN

IN

N-1 (N —1)2
depending on whether the two queues share the total link < a;(aj +3a; +1). (4)
bandwidth of2D/N in a work-conserving manner [Fig. 2(a)],

or receive dedicated portions d?/N each [Fig. 2(b)]. For The above upper bounds f(M;Q), a§3) correspond to the
convenience, we assume in the analysis that the packets havgond and third moment of ‘a Poisson distributed random
a fixed size and that the system operates in a time-slotiggliable ,le with meana;, and will be quite tight whenV
fashion, with the duration of a time slot equal to a packet not too small and the;;’s are close to uniform.

service time. 1) Segregated bandwidthArmed with a statistical descrip-
) o tion of the packet arrival processes, we are now in a position to
A. Pseudo-random traffic splitting analyze the queueing behavior. @t ; (t) andQ; »(t) be the

We first examine the pseudo-random traffic splitting schenféueue sizes at the start of theh time slot for the step-1 (link
In preparation for the queueing analysis, we start with d& intermediate nodé) traffic and the step-2 (link to egress
termining the statistical characteristics of the packet arrivAPde ) traffic, respectively. We first investigate the scenario
processes on the link from node to nodej. Let ;= where the total link bandwidth is Statlcally partltloned between
(1—€)d;; be the probability that during an arbitrary time slot 4he two queues. Observe th@k. () will be identically zero,
packet arrives at (ingress) nodeestined for (egress) noge Since no more than one packet arrives per time slot in the
with d;; = D;;/D. Denotea; = Zf‘vﬂ . pseudo-random case [Fig. 2(b)]. Ldt (¢) be the number of
By virtue of the traffic splitting scheme, the arrival patter@cket arrivals between the start of thth and(z +1)-th time
of the step-1 traffic is statistically identical for gllHence, we SI0t. The evolution of the proces; (¢) over time may be
drop the indexj, and letB; be a random variable representingléscribed by the simple recursion
the number of packet arrivals of the step-1 traffic per time slot.

Note thatB,, is simply a 0-1 random variable With{ 3, = Qj2(t+1) = [Q;2(t) + A;(t) — 1], (5)
1} = oy, and thusP{By, = 0} = 1 — a.
By construction, the arrival pattern of the step-2 traffic igith the notational conventiorg]™ := max{0,q¢}. If the

statistically identical for alk. Hence, we suppress the index destinations of arriving packets at the ingress nodes in suc-
and letA; be a random variable representing the number eessive time slots are assumed to be uncorrelated, then the
packet arrivals of the step-2 traffic per time slot. Thén A;(¢)'s are independent and identically distributed (i.i.d.)
may be represented at; = Y.~ | 4,;, where theA,;'s are copies of the random variablé;. Let 4;(z) := E{z4i} and
independent 0-1 random variables WitfA,; = 1} = oy; @j(2) = E{z%2} be the probability generating functions
and thusP{A;; = 0} = 1 — a;;. Denote byajm) = E{AT"} (pgf's) of the rgndom variabled ; ande,gz respectively, with

Q; - representing the steady-state versiontdfz(t). It may

1 N
the m-th moment of4;. Note thata}” =337, aij = aj, then be derived from the recursion (5),

J
N

ol? = aj(a;+1) — ;afj, @) Qsa(2) = & ;]ozjz))(: 2).



which gives Corollary 1 For any vectory, Q4,, <iex @ ;-
(2)

B{Q,,} — a9 ©6) Heavy-traffic behavior
” 2(1 —ay)’ The above results also show thatlev(Q;2)/E{Q;2} — 1
E{Q?_Q} = Q(E{QJ—Q})Q +E{Q;2} + R, (7) ase |0, ie,a; T 1. Moreover, for given relative fractions
' a;; = (1—e€)d;;, the mean queue siZ&{Q; .} approximately
stdev(Qj,2) = \/(E{Qj,z})2 +E{Qjz2} + R, (8) grows linearly with1/e. These two results are again conse-
. guences of a more general property, namely that the scaled
with . . o
(3) (2) queue sizee(); o converges to an exponentially distributed
oz —3a; + 204 . . () .
R:= -1 J random variable with mea(l —d;”)/2 ase | 0, i.e.,
3(1 - ay)
, ~ : — o20/(1=d{?)
Using the upper bounds fai\”, o\” in equations (2), (4), IJ%P{EQJ’Q >t =e s
we obtain N N @ o
_ - % with d;” := >~ d7;. Note thatl —d;”’ arises as the limit of
0= E{Q2} < 2(1 — o)’ al?) —a; asa; 1 1 for given relative fractions;; = (1—€)d;;.
This suggests the following approximation for the queue size

where the lower bound is attained for binary matri¢es;} jistribution:
and the upper bound, corresponding to a Poisson arriva? @
processd;(t), is approached for uniform matricéd,;} when — P{Q;» > o} v e 2007/ (07— o) — o=/B{Qs2} = o7
N is not too small. ) )
with —1/E{Q; .} the asymptotic decay exponent ang :=
2) Intermezzo: Before moving to the case of shared—1/E{Q;:} the asymptotic decay factor.
bandwidth, we first pause to make some important

observations. 3) Shared bandwidth:We now proceed to the scenario

where the total link bandwidth is dynamically shared between
Stochastic majorization properties the two queues in a work-conserving manner [Fig. 2(a)]. Let

The above results indicate that the mean queue stk (t) = Q’“l +Qj2(t) be th? total queue size at the start
is minimal for binary matrices{d;,} and maximal for of the ¢-th time slot. The evolution of the procegs(t) over

uniform matrices{d;;}. This result is in fact an implication time may be described by the recursion
of a far more general property, namely that the queue Qir(t+1) = [Qir(t) + A;(t) + Br(t) — 2]*, (9
size @); is ‘larger when the vector(aj,...,an;) IS
‘more balanced’. In order to formalize the above statementjth A;(t) and By (t) i.i.d. copies of the random variables;
we need to introduce some technical concepts. For aadBj. Let Q;i(z) := E{z9*} be the pgf ofQ;x, with @,y
given vectora € UN = [0, 1]N, define the associatedrepresenting the steady-state versior@f@.(t). Then it may
random variabled, := SV A;, with P{4, = 1} = «; be derived from the recursion (9),
anq P{A; = O} = 1 — «;. Also, for a given randpm (@0 + (g0 +q)2)(1—2)
variable A, define the process4(t) by the recursion Qjr(2) = A (B) -2
Qa(t) :==[Qa(t—1)+ A(t — 1) — 1]*. The next proposition J\8) DR8] = £
states that)  , is larger thanQ 4, in the increasing convex With g,,, := P{Q;;, = m}, m = 0, 1. The probabilitieszo, ¢1
ordering sense when the vectaf majorizes the vecton/””. can be expressed in terms of the roots of certain equations,
(For definitions of these concepts, see Refs. 16 and 20.) but can generally not be expressed in closed form. However,
there are simple sharp lower and upper bounds:
Proposition 1 If o/ < o, thenQ4_, (t) >icx Qa,,, (t) for )

Nt = >. dE m >E m a; ' — 042- — CY% —+ o
a1 =1.2..., Qu, i Qa0 a0AB(0R, ] > E(QF, ) Ml oy <E{Qu) <
for all m = 1,2,.... In particular, ifa = a(1,1,...51) 4(1 — k)
then Qa, >ix Qa, for any vector 3 € UM with a? — a2 - a2+ ap
N J J k
i1 Bi/N =a<1. 41 — ajyx) ’

Observe thain™) = (1/K,1/K,...,1/K)YN a; < o With ajyp = (a; + a)/2. Assumingea; = ax = o, we
for any N-dimensional vectorn, N < K. In addition, it obtain

may be shown that the random varjabtlém converges to a a® _ 4 a® _
Poisson distributed random variabfe; with mean>" " | «; m —a/2 <E{Qjr} < m +a/2.  (10)

as K — oo. These two observations imply that, informally
speaking, the queueing behavior is guaranteed to be ‘befite thatthe dominant term is exactly half the mean queue
than Poisson’, which is formalized in the next corollary.  size E{Q;.} in the case of segregated bandwidth, and

henceE{Q,r}/E{Q;2} — 1/2asa T 1.



The behavior of the two individual queue sizes depends and one can calculate the moments@,yfl as done before for
precisely how the total bandwidth is shared. However, as logg , with agm) replaced byﬁkm). Moreover, it can be shown

as the step-1 traffic is guaranteed to receive at least halftght (), , is smaller in the increasing convex ordering sense
the total bandwidth(;. 1 (¢) continues to be identically zero,ihan g, ,, with

which meansQ; »(t) = Q,x(t).
< split Guny (L= a)(1-2)
B. Random traffic splitting E{z%k1} = W
z —Z
We now turn the attention to the purely random traffic }
splitting scheme, and will indicate the variables with a hat twith E{z4#(*)} = ¢=x(1=2) g0 that

9

distinguish them from those used in the pseudo-random case. } } o2

As before, we first analyze the statistical characteristics of the E{Qk1} <E{Qk:1} = k.
packet arrival processes on the link from naddéo nodej 2(1 — o)
before proceeding to the queueing analysis. ay

32 32 _ A e 2
Let By, be a random variable representing the number Bl@i.} < E{Qia} = 3(1—ay) FE{Qr 1} +2(E{Qk1})"
packet arrivals of the step-1 traffic per time slot. ThBp

may be represented as The above upper bounds will be quite tight wh¥nis not too

small.
B i B Itis difficult to determine the distribution af; .. However,
k= - ki it can be shown thaf); » is larger than the queue sizg; »

. ) ) _in the pseudo-random case.
where the By, are independent 0-1 random variables with . . ) . .
P{Bj, = 1} = ax/N and thusP{Bj, = 0} = 1 — ay/N. 2) Shared bandwidthFinally we investigate the scenario

Denote byB(rrz,) _ E{Bm} the m-th moment ofB3,,.. Note that where the total link bandwidth is dynamically shared between
K " the two queues in a work-conserving manner [Fig. 2(a)]. Let
in a similar fashion as before. However, the more relevait’* be the size of a queue fed by a Poisson arrival process

observation is thaB;, is again smaller (in the convex ordering j+r(t) With meana; ;. = (a; + ax)/2. Assuminga; =
sense) than a Poisson distributed random variablewith % = @ It can be shown thap;;; is smaller (in the increasing
meanay. The latter upper bound will be quite tight as Iongconvex ordering sense) thay, with
as N is not too small,regardlessof the degree of (non)- (1-a)(1-=2)
uniformity of the a;;’s. R E{zAir} — 2

Turning to the step-2 traffic now, lefl; be a random ;
variable representing the number of packet ‘arrivals’ per timiith E{z4i++} = e=*(1=2) 50 that
slot. The word ‘arrivals’ is put in quotes, because not all 2

3" = ay. One can also calculate the higher momep|f&’

E{z@"} =

of these packets may actually make it to step 2 right away E{Q;r} <E{Qj} = ﬁ, (11)
due to possible queueing at step 1. The variabjemay be
represented as A ~ a? ~ ~
P NN E{Q%} SE{Q%) = 5= + E{Qu} + 2E{Qu}).
. . 31 —«)
Aj= z ZAijla (12)
=1 1=1

The above upper bounds will be quite tight whahis not
where theAm are independent 0—1 random variables wittpo small. Comparing the above results with those for the
]p{Aiﬂ =1} = a;;/N and thusIP{Aijl =0} =1-a;/N. case of segregated bandwidth, we conclude that total
Denote byd§.m) _ ]E{AA;n} the m-th moment ofA ;. Note that gueue size@;; is now about as large as just the queue

(}E‘l) — ;. One can also calculate the higher momafmj&%b) size (0,1 of the step-1 traffic in the latter case

in a similar fashion as before. However, the more relevant . . .

observation is thaﬂ]— is again smaller (in the convex ordering bWe concluQe the ;sec_:tlon Vr\:'th an mpor;a;rrl]t :i?a;k' in tT.e
sense) than a Poisson distributed random variabjewith af or\:e queueing anlfyss Wi ave assumed fha de es mygns
meanc;. The latter upper bound will be quite tight as long a$ the arriving packets at the various ingress nodes are 1.I.d.

N is not too small, even when the;'s are far from uniform. rom .SlOt to slot. Of course, there are a f_ar broader range
of arrival processes imaginable which satisfy the marginal

1) Segregated bandwidtttiaving obtained a characteriza-statistics implied by the matricgsl;; }, and in particular ones
tion of the packet arrival procesess, we now analyze the queygich exhibit strong temporal correlations. Correlations in
ing behavior. We first examine the scenario where the total ||Iﬂke destinations of arri\/ing packets render an exact ana|ysis
bandwidth is partitioned between the two queues [Fig. 2(b)htractable in general, and a detailed treatment is beyond the
From the recursio®)y, 1 (t + 1) = [Qx1(t) + Bi(t) — 1]*, it scope of the present paper. However, it can be shown along
can be shown that similar lines as in Ref. 2 that under mild assumptions the

E{z%1) = (1— o)1~ 2)’ random variablesl; (t) converge to a sequence of independent
E{zBr} — 2 Poisson distributed random variables;(t) with mean o,



. . TABLE |
and the resulting queue sizes also converge to those of @ N cHARACTERISTICS OF OUR THREE EXAMPLE NETWORKS

gueue fed by a Poisson arrival process\agrows large. We

refer to Ref. 13 for related results in the context of RLB. S— Ja”ets Ab“enlel Gea;_
. . i . umbpber or nodes

This suggests that random traffic 'spllttlng schemes prqwde Number of links 10 14 40

an effective mechanism for ‘breaking’ temporal correlations Average link distance [km] 184 1,317 797

in the activity patterns of individual node pairs, in a similar ::!”E C<’=1I06\C!:!eSX Em §\S/E¥\1) 5;0327 2327gzlf 365'81;2

. . . .o . .. INK capacitiesx Km , , ,0243

way as the impact of correlations in the activity of individual Link capacitiesx km (RLB) 2.776 30,087 56,312

sources diminishes at high levels of statistical multiplexing. It
further provides justification for drawing on available queueingt least as much link capacity as VPN-Tree routing ardspP
results for models with Poisson arrivals as approximations [1iuting in general uses more link capacity than RLB for the
for more intricate and bursty traffic processes. same degree of robustness to traffic pattern variations [19]. In
this work we only focus on RLB and SP, since we assume that
) ) the set up, maintenance, and restoration costs associated with
A. Simulation model VPN-tree topologies are non-trivial and hence may outweigh
We implemented RLB as a new application ms2 for their capacity advantages.
packet-level simulations. In this application, each node marks
the packets with the address of the destination node and sefesiraffic model
them to an intermediate node. The intermediate nodes are sefg study the queuing performance of our three example
lected with a round-robin scheme for investigating the behavigetworks, we used sets of randomly generabede traffic
of pseudo-random schedules. To investigate the behaviorngétrices[5], [4]. Hose matrices are characterized by the fact
a fully random schedule, the intermediate nodes are selectegt each node has fixed ingress capacitiel; ingress and
by generating a uniform random integer between 1 ahd egress capacitie®); egress Which is a reasonable assumption
At every ingress node, the rate at which a particular node rifotivated by the physical connection speed attached to each
selected as the destination is determined by randomly chosgjgle. The point-to-point demands; of the hose matrices
traffic matrices satisfying the hose constraint (see Sec. IV-@hey the ingress and egress relations@;dij = D; ingress
Upon receiving a packet, the intermediate node looks up thad >;dij = Djegress and there is no traffic from any node
destination from the packet and forwards it to the destinatigiestined to itself, i.e., the matrices have zero diagonals. No ef-
node. Flows from step 1 and step 2 of RLB, as defined fort is made to symmetrize the traffic matrices, id;, # d;i.
Sec. II, are considered parts of two different traffic classes, ardwever, we do assume all ingress and egress capacities to
class-based queuing (CBQ) can be used to assign prioritieptoequal for all nodes i.e., D; ingress= D; egress= D. In our
these classes. packet-level simulations we further assume= 1 Mbps, with
For comparative purposes (Sec.V-D), a shortest path routifiged-size 1500 byte packets.
scheme was also implemented, using Dijkstra’s algorithm Motivated by the findings of our queuing analyses in
based on the delay metric. The delay metric was obtained fr@ac. 111, in particular Eq. (1), we took the sum-of-squares of
the propagation delays on each of the links on the respectpematrix elements as our metricto describe different traffic
topologies. matrices,
B. Example networks = Zd?j : (13)
We use the three representative carrier networks depicted "
in Fig. 3 as examples to study the queuing performan¥ée randomly generated 10 hose matrices for each prescribed
of different network architectures: the UK research netwofRetric x. In agreement with our findings in Sec. lll, the
Janet, the US research backbone Abilene, and the Europ&glgllest metric ofD*N/(N — 1) is obtained foruniform
research network Geant. The key network characteristics &tatrices withd;; = D/(N —1). Conversely, the largest metric
summarized in Tab. I. of D?N is obtained for random permutations (with non-zero
Also shown in Tab. | is the sum of all required linkdiagonal) of the identity matrix. Figure 4 depicts the metrics
capacities in the three networks that guarantees routing of /alffor the random hose matrices generated for our 27-node
possible hose matrices using shortest-path (SP) routing, VAeant), 11-node (Abilene), and 8-node (Janet) networks. Each
Tree routing, and RLB. These CapacitieS' taken from Ref. :]Jg,n‘izontal slot (indicated by the dotted vertical |ineS) contains
are the results of linear programming (LP) formulations ankP randomly chosen hose matrices with roughly the same
are normalized taD = 1. In VPN-Tree routing, one deter- MEtrcs .
mines that tree on the physical network topology that yields
lowest total link capacities under the hose constraint and only
assigns capacity to the links that are part of that tree. It hasln this section, we discuss the results of our packet-level
been shown [6] that VPN-Tree routing represents the optimwimulations capturing the queuing behavior of RLB on our
routing strategy for hose traffic in the sense that it uses the letisee example networks; we compare these results to our
amount of total link capacities. Note thay RLB always uses analyses in Sec. Il

IV. PACKET-LEVEL SIMULATIONS

V. RESULTS AND DISCUSSION



(a) JANET topology (b) ABILENE topology (c) GEANT topology

Fig. 3. Three example networks considered in this paper [http://www.ja.net; http://www.abilene.iu.edu; http://www.geant.net].

A. Impact of step 1 traffic splitting on queue sizes

In studying the queuing performance of RLB, we first note Janet
that due to the randomization process in step 1 of RLBZ
all queues are statistically identical. We verified this fact byE
comparing the statistical parameters of all individual queues?
on our example networks. Therefore, we looked at network-§
averaged queue parameters in the frame of our studies.

Figure 5 shows the network-averaged queue $ifesd)
as well as the queue size standard deviations (blue) as a
function of time for the three networks under consideration. 22 22
Each time slot indicated by the dotted vertical lines compriseg;
ns2simulations of 10 randomly different hose traffic matrices%
with similar metricsy [cf. Fig. 4]. As time progresses, the
matrices gradually change from uniform to highly skewed.
Each traffic matrix is applied for 100 s and the queues ar%J
monitored every 10 s, which was verified to be large enough [(c)
for the queues to reach their steady states. The offered network Time Time
load is chosere = 5% below capacity, i.e. the links have

capacityD/N and the ingress traffic i8.95D.

Figure 5(a) applies to the aggregate (step 1 plus step
gueue of RLB withprobabilistic step 1 traffic splitting on the
Janet network. We observe that tiverage queue size as well
as its standard deviation are virtually independent of the
applied traffic matrix . This is expected from the complete
traffic randomization process performed in step 1 and als

agrees with our analyses in Sec. lll.

Probabilistic traffic splitting Pseudo-random traffic splitting
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random splitting (b,d,f) on our example networks. As time progresses, the
random test matrices become increasingly skewed (increasing mejrics

Fig. 5(b) applies to @seudo-randontraffic distribution on
the Janet network, which in our case was implemented as a
round-robin schedule. We again see close agreement between
mean and standard deviation of the queues. Interestingly, the
average queue size takes on its worst-case values for
uniform traffic matrices, while highly skewed matrices
result in smaller queues in agreement with our predictions of
Sec. lll. This behavior can be intuitively understood from the
fact that a deterministic step 1 schedule maximally smoothens

Fig. 4. Metricsy of our randomly generated traffic matrices for the thredhe distribution of final packet destinations at an intermediate

example networks studied here.

node if the ingress traffic at each node is destined for just



. L . . Probabilistic traffic splittin Pseudo-random traffic splittin
one other egress node. In this case, within a time duration pIing piting

corresponding taV packets, each intermediate node receives > Janet 50
exactly one packet destined for each output node, whiclgy . o
matches the allocatefl /N link capacity for step 2 traffic and =5 ||~ g";a’;é\a,”(a;{zflis) =
thus eliminates any queue build-up. Uniform traffic patterns;s || o mean (simu|ati¥m) B
on the other hand, may lead to multiple packets outNof 3 || ° Std. dev. (simulation) 3
packets arriving at an intermediate node that are destined fa@ 3
one particular output node, which is larger than whatZthev- 0 | — ; =
link can support and thus lets queues build up, similar to the 0 Offer;g load [3/2] 100 0 Oﬁersg load [22] 100
probabilistic traffic splitting scenario.
By comparing Figs. 5(a) and (b), we note that therst- % (c) Abilene % (d) Abilene

case queue size for the pseudo-random schedule is lower
than the queue size for probabilistic traffic splitting. This
can be understood from the fact that a pseudo-random step 4
schedule assigns any given intermediate node to exactly 1 o@
of N packets upon step 1 traffic splitting, which matches thed
D/N link capacities for step 1 and therefore avoids any step 1 o

ze [kB]

Queue size [kB]

70 80 90 100

gueue build-up and (for networks operating below capacity) Offered load [%] Offered load [%]

frees up any unused step 1 link capacity for step 2 traffic, i.e., 5 5

there is a service rate @l + ¢)D/N available on each link (e) Geant ® Geant

for step 2 traffic, while the offered load {d — ¢)D/N. This E E

is equivalent to an offered load @it — ¢)/(1 + ¢)D/N =~ 3 3

(1—2¢)D/N over a link of capacityD/N, as opposed to an ¢ o

offered load of(1 — ) D/N over a link of capacityD /N for 3 3 ,

RLB using probabilistic traffic splitting. c c A
We also observe that throughout our simulations stan- 0==0 20 9% 100 0%0 "g/ 100

dard deviation of the queue size equals its mean, which Offered load [%] Offered load [%)]

is indicative of an exponential queue size distributionThe
7. Mean queue sizes and their standard deviations as a function of offered

eXponentla_l nat,ure of the_qu_eue Size d|§tr|but|0n (stralgh_t “n%gd for RLB using probabilistic step 1 traffic splitting (a,c,e) and pseudo-
on a logarithmic scale) is indeed confirmed by numericallndom splitting (b,d,f) on all three example networks. Symbols: simulation;
evaluating the cumulative queue size densities, shown lires: analyses.
Fig. 6(a) for probabilistic traffic splitting and (b) for pseudo- i , i i i
random traffic splitting under different levels of offered |Oa(§)§th|or of RL,B might be improved b_y implementing a_
for the Janet network. In (b), the matrix metyicis assumed Priority mechanism between step 1 traffic and step 2 traffic
mid-way between the minimum and maximum possible valu¢¥nen entering their common queue with service g/ N.
Looking at the average queue size and its standard deviatighthis €nd, we performeds2simulations for RLB with both
for the Abilene and Geant networks [Figs. 5(c,d) and (e’ﬂrobabI!IStIC an_d pseudo—_ra_r@om step 1 traffic sphttmg where
respectively], we note that thetudied queueing parameters W€ assigned different priorities to the two traffic streams at

(means and standard deviations) do not depend on on the each queue, favoring either step 1 traffic or step 2 traffic by
size of the networkunder consideration. different amounts. However, by doing so we did not observe

o _ ~ any changes in the average queue size or its standard deviation.
B. Priority mechanisms between step 1 and step 2 queuinghis indifference to prioritization is attributed to the lack of
Having understood the importance of the nature of stepc@rrelations in the packet arrival process.

traffic splitting in RLB, we investigate whether the queueing
C. Queue sizes versus offered load

Probabilistic traffic splitting Pseudo-random traffic splitting Figure 7 shows the average queue sizes as well as their stan-
@) ! ) dard deviations as a function of offered lo@id— ¢) for RLB
Offered load: using probabilistic step 1 traffic splitting (left column) and

01 95% pseudo-random traffic splitting (right column) for all three of
our example networks. The symbols represe#simulations
80% (squares: mean queue sizes; circles: standard deviations), and
50% the lines are the analytic solutions obtained by our queuing
0 20 30 40 50 %%% 020 30 20 30 analysis of Sec. lll, Egns. (10,11,12)he theory is seen to
Queue size [kB] Queue size [kB] be in excellent agreement with the simulations in all cases
Fig. 6. Queue sizes are close to exponentially distributed for RLB witl As discussed in Se_cs.. lll and V°A, t-h-e Frafhc pattern.has I.’lO

bal %pact on queue statistics for probabilistic step 1 traffic split-

probabilistic (a) as well as with pseudo-random (b) traffic splitting. The curvd
apply to the Janet network with different levels of offered load.

0.1 Offered load:

90%

0.01 0.01

Cumulative probability
Cumulative probability

0.001
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Fig. 8. Mean queue size and its standard deviation for SP routing on tHe]
Janet network assuming two different classes of hose traffic matrices.

3
ting, while it has for pseudo-random traffic splitting. There—[ !
fore, we plot three families of curves representing differenh]
matrix metrics for pseudo-random splitting:= N/(N — 1),
corresponding to uniform traffic matrices,= NV, correspond-
ing to permutations of the identity matrix, as well as one[5]
value of i, falling midway in between. In agreement with our
discussion in Sec. V-A, the queues remain empty for highl){
skewed traffic patternsu(= N), and for uniform traffic, the 6l
queuing behavior is close to the one for probabilistic splitting
with half the slack parameter. -
D. Comparison to shortest-path routing

Finally, Fig. 8 shows the performance of the shortest-patk]
architecture on the Janet network for comparison. In order tg,
set the link capacities for the SP network for a fair comparison
with RLB, we first determined the link capacities that wouldL%!
be required to support all hose matrices on the network usifg
the LP formalism described in Ref. 19, and then scaled back
the link capacities such that the sum of all link capacitid$?!
equaled the total capacity required for RLB. According to
Tab. 1, the scaling factor is 81%. We assumed traffic matricés]
that were close to uniformy[ = N/(N — 1)] as well as
highly skewed ones/{= N]. As expected from our capacity14)
scaling, queues start to build up at 81% load for SP routing
under highly skewed traffic patterns. We observestang
dependence of queue build-up on the traffic matrix as |15
well as a large standard deviation of the queue sizes across
the network, indicatingsevere hot spots in the network (16]
For larger networks, we observed even more pronouncgé
differences as well as the expected instabilities resulting from
a lack of capacity to support all demand patterns. (18]

VI. CONCLUSIONS [19]

We have studied the queueing behavior of randomized
load balancing (RLB) across networks, using both analyticip]
techniques as well as packet-level simulations baseds@n 21]
Our results show thati) for probabilistic traffic splitting,
gueueing delays are independent of the traffic patté@infof [22]
pseudo-random splitting, queueing delays are lower than for
probabilistic splitting. For the latter case, queuing delays afg;
provably worst for uniform traffic matrices and best for highly
skewed matrices, which are becoming particularly importa
for emerging network applications. We have also shown that
gueuing behavior of RLB is uniform across the network, which

in contrast to shortest-path routing avoids hot spots due to
dynamically changing demand patterns.
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